Hierarchical reinforcement learning guidance with threat avoidance
نویسندگان
چکیده
The guidance strategy is an extremely critical factor in determining the striking effect of missile operation. A novel law presented by exploiting deep reinforcement learning (DRL) with hierarchical deterministic policy gradient (DDPG) algorithm. reward functions are constructed to minimize line-of-sight (LOS) angle rate and avoid threat caused opposed obstacles. To attenuate chattering acceleration, a structure improved function action penalty put forward. simulation results validate that under proposed method can hit target successfully keep away from threatened areas effectively.
منابع مشابه
Hierarchical Reinforcement Learning with Parameters
In this work we introduce and evaluate a model of Hierarchical Reinforcement Learning with Parameters. In the first stage we train agents to execute relatively simple actions like reaching or gripping. In the second stage we train a hierarchical manager to compose these actions to solve more complicated tasks. The manager may pass parameters to agents thus controlling details of undertaken acti...
متن کاملHierarchical Functional Concepts for Knowledge Transfer among Reinforcement Learning Agents
This article introduces the notions of functional space and concept as a way of knowledge representation and abstraction for Reinforcement Learning agents. These definitions are used as a tool of knowledge transfer among agents. The agents are assumed to be heterogeneous; they have different state spaces but share a same dynamic, reward and action space. In other words, the agents are assumed t...
متن کاملObstacle Avoidance through Reinforcement Learning
A method is described for generating plan-like, reflexive, obstacle avoidance behaviour in a mobile robot. The experiments reported here use a simulated vehicle with a primitive range sensor. Avoidance behaviour is encoded as a set of continuous functions of the perceptual input space. These functions are stored using CMACs and trained by a variant of Barto and Sutton's adaptive critic algorith...
متن کاملConcurrent Hierarchical Reinforcement Learning
We describe a language for partially specifying policies in domains consisting of multiple subagents working together to maximize a common reward function. The language extends ALisp with constructs for concurrency and dynamic assignment of subagents to tasks. During learning, the subagents learn a distributed representation of the Q-function for this partial policy. They then coordinate at run...
متن کاملHierarchical Reinforcement Learning Applied
A general methodology for performance improvement of Intelligent Machines based on Hierarchical Reinforcement Learning is introduced. Machine Decision Making and Learning are based on a cost function which balances reliability and computational cost of algorithms at the three levels of the hierarchy proposed by Saridis. Despite this particular framework, the methodology intends to be suuciently...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chinese Journal of Systems Engineering and Electronics
سال: 2022
ISSN: ['1004-4132']
DOI: https://doi.org/10.23919/jsee.2022.000113